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Hardware Trends:

● Massive throughput increases in commonly used storage

– PCIe attached storage (NVMe SSDs)

– massive arrays of disks (cloud block devices)

– >3GB/s R/W for commodity prosumer hardware

● Massive parallelism increase

– SSD: cannot be exploited through e.g. AHCI / SATA

– cloud: actually talking to complicated storage array using many disks 
internally 



Hardware Trends

● Latency:

– PCIe SSDs: low microseconds (< 1000ns for some)

– cloud: ~1-5 milliseconds

● Random writes:

– SSDs: Noticable, but not hugely. May impacts lifetime

– cloud: often basically not noticable, can be higher throughput for fast / large 
devices

● CPU & Memory:

– Many more cores

– Bandwidth per core not increasing



Queuing

● NVMe SSDs have enough hardware queues to have one queue per core 
(no locking!)

● OS level changes needed (linux: block-mq)

● IO parallelism required to benefit fully is significant

● NVMe: Each queue can be deep (thousand)

● SATA: One queue with 32 entries

● SAS / SCSI: one / few queues, with hundreds entries



Why care? Postgres uses the OS, abstracting this?

● Not utilizing hardware parallelism – not issuing enough requests in parallel

– posix_fadvise(WILLNEED) has significant synchronous cost

● Overhead of page cache significant – and largely synchronous

– synchronous scans cannot utilize hardware

● Latency highly variable – kernel does not have necessary information (nor 
interfaces to transport such information)

– hacks with posix_fadvise(DONTNEED) make situation less bad, but not good

– Checkpoints still have bad performance impact

– Very hard to control better from postgres

● WAL throughput is quite low



Unpredictable Latency



Cost of memory copies from pagecache



Asynchronous IO

● (often) multiple commands can be submitted at once

– syscall overhead mitigated

● (often) DMA directly between drive and userspace memory (no kernel)

● (sometimes) commands executed via (kernel) threads



Overview of AIO APIs

●   linux libaio:
– buffered io, fsyncs fall back to synchronous 

execution → not suitable
– unbuffered io: if all goes well: dma into buffers, can 

achieve very high speed

● windows iocp:
– mature
– uses threads (bad for postgres)
– Unclear if it does DMA for unbuffered IO?

● posix aio:
– emulated on at least some operating systems (linux)

● freebsd aio:
– kernel threads
– integrated with kqueue
– Unclear if it does DMA for unbuffered IO?

● OSX

– kernel threads,

– apparently not integrated with kqueue (hat tip to 
Thomas Munro)

● linux: io uring

– very new API (5.1, early 2019)

– two ring buffers, very little locking
● fewer / no syscalls in hot path
● no locks needed

– increasing number of operations

– unbuffered: DMA into buffers

– buffered: kernel threads

– allow interdependent operations to be queued
● e.g. start following write(s) only after prior 

completed



Shared Memory

Proposed Postgres AIO Architecture
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● Abstraction hiding used AIO interface
● Completion Based, AIO implementation 

independent callbacks (e.g. to mark async 
read buffer as valid)

● Multiple queues
– WAL queue for WAL and buffer writes 

when dependent on WAL flush
– Readahead queue to control maximum 

RA
– Checkpoint queue

● shallow, to control latency impact

– Multiple IO queues for the rest

● to achieve higher concurrency

● APIs to asynchronously read / write buffer
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Comparing sync/async IO execution

synchronous read:

– allocate shared buffer

– mark buffer as IO in progress

– synchronously pread()

– mark buffer valid

– continue execution using 
buffer

asynchronous read:

– allocate shared buffer

– mark buffer as IO in progress

– create AIO request 

– associate buffer with IO object

– (repeat)

– start multiple IOS w/ single syscall

– do something else (e.g. process 
previously read blocks)

– execute IO completions

– continue execution using buffer



AIO Details

● AIO implementation hidden behind generic API

– currently API exposes high level ops like read buffer, write buffer, write wal

● Deadlock Danger:

– p1: start reading buffer #1

– p1: do something else, block on p2

– p2: need buffer #1

– Solution: p2 can complete p1’s IO, and use the buffer

● Closing File Descriptors

– can’t re-issue requests (e.g. partial reads/writes) to shared queue from 
different process with same fd (number different)



Prototype

● Only supports linux’s io_uring

– but most details hidden within aio.c

● Highly experimental / unstable

● Only a single queue for now



Prototype Results

● all recent ones with linux 5.5, Samsung 970 EVO Plus 2TB

● sequential scans:

– single process, pg prewarm:

– buffered sync: 1.8GB/s ~75% CPU

– unbuffered sync: 600MB/s ~20% CPU

– buffered async: ~2GB/s, 150% CPU - too many small requests

– unbuffered async: 3.2GB/s ~50% CPU

● parallel sequential scan 3 processes (2 workers):

– buffered sync: 2.2 GB/s

– unbuffered async: 3.1 GB/s

– high latency system: not worth comparing, basically cheating, sync so bad
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Prototype Results

● larger than memory pgbench, with async writeback

– ~20% gain, lots more to get

● WAL, open_datasync, OLTP, unbuffered (likely buggy):

– ~15-20% gain from AIO in stupidest possible implementation
● older version: higher gain for high latency, but definitely buggy, 

so ?

– plenty to gain for *non* async too
● split write from sync lock
● stop writing so much at once, release waiters earlier
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Prototype Results

● WAL, open_datasync, OLTP, asynchronous commit, unbuffered (likely 
buggy):

– ~30% gain

● WAL, parallel COPY of large files: 

– ~40% gain, bottleneck quickly becomes data file IO
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Subsystem Thoughts

● eventually good defaults would probably be to use unbuffered IO for writes, 
buffered reads (except for large seqscans, vacuum etc)

● checkpoints

– can be sped up a good bit on busy systems, most importantly we can control 
latency impact (shallower queue)! Doesn't work yet in prototype

● background writer / backend writeback

– very substantial gains by not blocking during backend writes

– get rid of bgwriter?

– Issue writes from bounce buffers?
● very short locking duration for writes
● memcpy not free, but already needed with checksums



Subsystem Thoughts

● Sequential Scans need own readahead logic for direct IO

– nontrivial to compute how much to prefetch, especially on high 
latency systems

– a lot more robust than using OS (random cached buffers defeat)

● FlushBuffer()

– can issue interdependent linked IO without PG blocking

– helps VACUUM massively due to ringbuffer constantly causing WAL 
flushes



Questions

● Do we need to support multiple platforms initially?

– perhaps add io_uring and worker process based implementation?

– if windows: how to deal with number of threads?

● Need to start/issue pending local requests when potentially blocking – 
how?

● How to efficiently wait for multiple Condition Variables?
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