
Email: andres@anarazel.de
Email: andres.freund@microsoft.com
Twitter: @AndresFreundTec
anarazel.de/talks/2020-01-31-fosdem-aio/aio.pdf

Andres Freund
PostgreSQL Developer & Committer

Asynchronous IO for
PostgreSQL

(and probably also Direct IO)

Time

Client

Postgres

OS

Disk

Reads: synchronous, not cached

Time

Client

Postgres

OS

Disk

Reads: asynchronous, not cached

Client

Postgres

OS

Disk

Reads: synchronous, OS cached

Time

Client

Postgres

OS

Disk

Reads: synchronous, postgres cached

Time

Postgres

OS

Disk

R
equest

Buffered Read

Time

Processing

Page
Allocation

Postgres

OS

Disk

R
equest Processing

Page
Allocation

DM
A

m
em

cp
y

Postgres

OS

Disk

R
equest

Non-Buffered Read

Time

Processing

Postgres

OS

Disk

R
equest Processing

D
M

A

Hardware Trends:

● Massive throughput increases in commonly used storage

– PCIe attached storage (NVMe SSDs)

– massive arrays of disks (cloud block devices)

– >3GB/s R/W for commodity prosumer hardware

● Massive parallelism increase

– SSD: cannot be exploited through e.g. AHCI / SATA

– cloud: actually talking to complicated storage array using many disks
internally

Hardware Trends

● Latency:

– PCIe SSDs: low microseconds (< 1000ns for some)

– cloud: ~1-5 milliseconds

● Random writes:

– SSDs: Noticable, but not hugely. May impacts lifetime

– cloud: often basically not noticable, can be higher throughput for fast / large
devices

● CPU & Memory:

– Many more cores

– Bandwidth per core not increasing

Queuing

● NVMe SSDs have enough hardware queues to have one queue per core
(no locking!)

● OS level changes needed (linux: block-mq)

● IO parallelism required to benefit fully is significant

● NVMe: Each queue can be deep (thousand)

● SATA: One queue with 32 entries

● SAS / SCSI: one / few queues, with hundreds entries

Why care? Postgres uses the OS, abstracting this?

● Not utilizing hardware parallelism – not issuing enough requests in parallel

– posix_fadvise(WILLNEED) has significant synchronous cost

● Overhead of page cache significant – and largely synchronous

– synchronous scans cannot utilize hardware

● Latency highly variable – kernel does not have necessary information (nor
interfaces to transport such information)

– hacks with posix_fadvise(DONTNEED) make situation less bad, but not good

– Checkpoints still have bad performance impact

– Very hard to control better from postgres

● WAL throughput is quite low

Unpredictable Latency

Cost of memory copies from pagecache

Asynchronous IO

● (often) multiple commands can be submitted at once

– syscall overhead mitigated

● (often) DMA directly between drive and userspace memory (no kernel)

● (sometimes) commands executed via (kernel) threads

Overview of AIO APIs

● linux libaio:
– buffered io, fsyncs fall back to synchronous

execution → not suitable
– unbuffered io: if all goes well: dma into buffers, can

achieve very high speed

● windows iocp:
– mature
– uses threads (bad for postgres)
– Unclear if it does DMA for unbuffered IO?

● posix aio:
– emulated on at least some operating systems (linux)

● freebsd aio:
– kernel threads
– integrated with kqueue
– Unclear if it does DMA for unbuffered IO?

● OSX

– kernel threads,

– apparently not integrated with kqueue (hat tip to
Thomas Munro)

● linux: io uring

– very new API (5.1, early 2019)

– two ring buffers, very little locking
● fewer / no syscalls in hot path
● no locks needed

– increasing number of operations

– unbuffered: DMA into buffers

– buffered: kernel threads

– allow interdependent operations to be queued
● e.g. start following write(s) only after prior

completed

Shared Memory

Proposed Postgres AIO Architecture

Q
WAL

Q
Read
Ahead

Q
Check-
Point

Q
IO 1-n

Shared Buffers

● Abstraction hiding used AIO interface
● Completion Based, AIO implementation

independent callbacks (e.g. to mark async
read buffer as valid)

● Multiple queues
– WAL queue for WAL and buffer writes

when dependent on WAL flush
– Readahead queue to control maximum

RA
– Checkpoint queue

● shallow, to control latency impact

– Multiple IO queues for the rest

● to achieve higher concurrency

● APIs to asynchronously read / write buffer

In P
rog ress R

e quests

Comparing sync/async IO execution

synchronous read:

– allocate shared buffer

– mark buffer as IO in progress

– synchronously pread()

– mark buffer valid

– continue execution using
buffer

asynchronous read:

– allocate shared buffer

– mark buffer as IO in progress

– create AIO request

– associate buffer with IO object

– (repeat)

– start multiple IOS w/ single syscall

– do something else (e.g. process
previously read blocks)

– execute IO completions

– continue execution using buffer

AIO Details

● AIO implementation hidden behind generic API

– currently API exposes high level ops like read buffer, write buffer, write wal

● Deadlock Danger:

– p1: start reading buffer #1

– p1: do something else, block on p2

– p2: need buffer #1

– Solution: p2 can complete p1’s IO, and use the buffer

● Closing File Descriptors

– can’t re-issue requests (e.g. partial reads/writes) to shared queue from
different process with same fd (number different)

Prototype

● Only supports linux’s io_uring

– but most details hidden within aio.c

● Highly experimental / unstable

● Only a single queue for now

Prototype Results

● all recent ones with linux 5.5, Samsung 970 EVO Plus 2TB

● sequential scans:

– single process, pg prewarm:

– buffered sync: 1.8GB/s ~75% CPU

– unbuffered sync: 600MB/s ~20% CPU

– buffered async: ~2GB/s, 150% CPU - too many small requests

– unbuffered async: 3.2GB/s ~50% CPU

● parallel sequential scan 3 processes (2 workers):

– buffered sync: 2.2 GB/s

– unbuffered async: 3.1 GB/s

– high latency system: not worth comparing, basically cheating, sync so bad

The
se

 b
en

ch
m

ar
ks

 a
re

 n
ea

rly
 lie

s

Prototype Results

● larger than memory pgbench, with async writeback

– ~20% gain, lots more to get

● WAL, open_datasync, OLTP, unbuffered (likely buggy):

– ~15-20% gain from AIO in stupidest possible implementation
● older version: higher gain for high latency, but definitely buggy,

so ?

– plenty to gain for *non* async too
● split write from sync lock
● stop writing so much at once, release waiters earlier

The
se

 b
en

ch
m

ar
ks

 a
re

 n
ea

rly
 lie

s

Prototype Results

● WAL, open_datasync, OLTP, asynchronous commit, unbuffered (likely
buggy):

– ~30% gain

● WAL, parallel COPY of large files:

– ~40% gain, bottleneck quickly becomes data file IO

The
se

 b
en

ch
m

ar
ks

 a
re

 n
ea

rly
 lie

s

Subsystem Thoughts

● eventually good defaults would probably be to use unbuffered IO for writes,
buffered reads (except for large seqscans, vacuum etc)

● checkpoints

– can be sped up a good bit on busy systems, most importantly we can control
latency impact (shallower queue)! Doesn't work yet in prototype

● background writer / backend writeback

– very substantial gains by not blocking during backend writes

– get rid of bgwriter?

– Issue writes from bounce buffers?
● very short locking duration for writes
● memcpy not free, but already needed with checksums

Subsystem Thoughts

● Sequential Scans need own readahead logic for direct IO

– nontrivial to compute how much to prefetch, especially on high
latency systems

– a lot more robust than using OS (random cached buffers defeat)

● FlushBuffer()

– can issue interdependent linked IO without PG blocking

– helps VACUUM massively due to ringbuffer constantly causing WAL
flushes

Questions

● Do we need to support multiple platforms initially?

– perhaps add io_uring and worker process based implementation?

– if windows: how to deal with number of threads?

● Need to start/issue pending local requests when potentially blocking –
how?

● How to efficiently wait for multiple Condition Variables?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

